Crystallographic Studies of the Biuret Reaction. I. Potassium bis-Biureto Cuprate(II) Tetrahydrate, $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{NHCONHCONH})_{2}\right] .4 \mathrm{H}_{2} \mathrm{O}^{*}$

By H. C. Freeman \dagger
Gates and Crellin Laboratories, California Institute of Technology, Pasadena, California, U.S.A.
J. E. W. L. Smith and J. C. Taylor \ddagger
School of Chemistry, University of Sydney, Sydney, Australia

(Received 18 January 1960)

Abstract

The crystal structure of potassium bis-biureto cuprate(II) tetrahydrate, $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{NHCONHCONH})_{2}\right]$. $4 \mathrm{H}_{2} \mathrm{O}$, has been determind, using the 3 -dimensional X-ray diffraction intensities obtained with $\mathrm{CuK} \alpha$ radiation. Hydrogen atoms were located, and individual anisotropic thermal parameters were included in the refinement.

The copper atom in this complex is square-coordinated by four amide nitrogen atoms belonging to two (biuret)=-residues. The usual elongated octahedron about the copper atom is completed by two more distant nitrogen atoms, each of which belongs to one of the biuret residues in one of two neighbouring complexes.

The $\mathrm{Cu}-\mathrm{N}-\mathrm{C}$ angles at the two indepedent kinds of ligand nitrogen atoms are 131°. The configurations about these atoms seem to be distortedly trigonal. The complexes are not entirely planar, though the known dimensions of the biuret molecule are not altered significantly by coordination. The notwork of hydrogen-bonds is not particularly efficient.

The final R factor is 0.079 (including the unobserved reflections) and the standard deviations of the coordinates of the light atoms are about $0.007 \AA$.

1. Introduction

This investigation arose partly out of a general interest in metal-peptide inter-action (Freeman, Smith \& Taylor, 1959) and partly out of a specific interest in the 'biuret reaction'.

It has been known for a long time that, when cupric ion is added to an alkaline solution of a protein or polypeptide, a violet-red colour is produced. This colour is reversibly changed to blue upon acidification of the solution. The reaction is a general one, but one of the simplest substances which undergo it is biuret, $\mathrm{NH}_{2} \mathrm{CONHCONH}_{2}$, (Brücke, 1883; Schiff, 1896) and the reaction has become identified with the name of this compound.

It was realized early that the violet-red colour was associated with the formation of a metal-peptide complex. Electrolysis of a copper-biuret solution showed the complex to be anionic (Ley \& Werner, 1913; Rising, Hicks \& Moerke, 1930), and Kober \& Haw (1916; cf. Plekhan, 1952) ascribed the violet-red colour ($\lambda_{\text {max. }} \approx 505 m \mu$) to the presence of four nitrogen atoms about the copper. No structural studies on the nature of the biuret-reaction complexes have, however, been reported.

[^0]
2. Data

Potassium bis-biureto cuprate(II) tetrahydrate was prepared by shaking a fresh concentrated solution of cupric acetate (0.02 mole) with biuret (0.04 mole) dissolved in the calculated excess of aqueous potassium hydroxide ($0 \cdot 1$ mole in 80 ml .). Violet-red crystals were obtained in 1-2 days after the addition of much alcohol (2 1.) containing a little alkali (Schiff, 1896, 1898). The crystals were unstable in air, but were adequately protected during the X-ray exposures by a thin film of collodion.
The space group was identified from systematic absences of reflections on Weissenberg photographs. The lattice constants were determined by fitting them to the spacings of six planes which gave reflections at large angles on Weissenberg photographs. These were taken with $\mathrm{Cu} K \alpha$ radiation on a large-radius camera and were calibrated by the superposition of the powder lines from a platinum wire on each film. An independent and identical value for d_{100} was obtained from a rotation photograph using the camera-adapter and extrapolation procedure of Mathieson (1957).
$\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{O}_{8} \mathrm{~N}_{6} \mathrm{CuK}_{2}, M=376 \cdot 8$ ($\mathrm{Cu} K \alpha, \lambda=1.5418 \AA$).
Monoclinic,

$$
\begin{aligned}
& a=3 \cdot 843 \pm 0 \cdot 004, b=13 \cdot 321 \pm 0 \cdot 008 \\
& c=13 \cdot 916 \pm 0 \cdot 008 \AA ; \beta=94^{\circ} 5^{\prime} \pm 15^{\prime}
\end{aligned}
$$

$U=710.5 \AA^{3}$. For $Z=2, D_{c}=1.761 \mathrm{~g} . \mathrm{cm} .^{-3}$.
D_{m} not observed. $F(000)=414$.

Fig. 1. Development of a-axis projection of $\mathrm{K}_{2} \mathrm{Cu}(\mathrm{NHCONHCONH})_{2} .4 \mathrm{H}_{2} \mathrm{O}$. (a) Scale arbitrary. (b) Scale arbitrary. After fourth contour, only one contour in four is shown. (c), (d) Contours at $1 . e^{-2} \AA^{-2}$, negative contours dashed, zero contour dotted. Crosses indicate probable hydrogen positions.

Systematic absences:
$h 0 l$ absent for ($h+l$) odd, $0 k 0$ absent for k odd.
Space-group: $P 2_{1} / n-C_{2 h}^{5}$.
The intensities of $9290 k l, 1 k l$ and $h k L$ ($L=0$ to 8) reflections were estimated visually on Weissenberg photographs. In addition, 331 reflections in the same range were recorded as unobservably weak, and 38 of the $\overline{3} k 1, \overline{3} k 2, \overline{4} k 1$ and $\overline{4} k 2$ reflections were missed through an error in the setting of the Weissenberg
camera oscillation. Corrections to the observations were applied for the Lorentz, polarization and Tunell factors. The linear absorption coefficient of the crystals for $\mathrm{Cu} K \alpha$ radiation was $80 \mathrm{~cm} .^{-1}$. The $0 k l$ and $1 k l$ data did not require absorption corrections since the crystal $\left(0.3 \times 0.04 \times 0.04 \mathrm{~mm} .^{3}\right)$ used for these observations was rotated about its needle axis. For the $h k 0 \ldots h k 8$ photographs, another crystal $\left(0.3 \times 0.1 \times 0.1 \mathrm{~mm} .^{3}\right)$ was rotated about an axis perpendicular to its long axis. In these cases the transmission factor varied from 10 to 45% and absorption was thus a serious problem.

Absorption corrections for the c-axis data were calculated via the method of Joel, Vera \& Garaycochea (1953). Contours of these corrections, calculated at 40 values of (α, θ) per quadrant in a reciprocal lattice layer-where α is the Weissenberg angular coordinate and θ is the Bragg angle-were plotted on templates. The correction for each reflection could then be read to an estimated accuracy of 3% (of the calculable value) by placing the templates over the Weissenberg films.

An approximate scale factor for the 0 kl data was obtained by Wilson's (1942) method. The other data were brought to the same scale via groups of common reflections. From a comparison of the final scaled F^{2} values of reflections observed about both axes it was concluded that the relative standard deviations of the intensities were about 20% for low intensities, 10% for medium intensities ($100<F^{2}<1600$) and 5% for strong reflections.

3. Structure determination

Approximate structure

The structure was solved in the projection along the short a-axis. Since the copper atom had to lie in a position of two-fold symmetry, an 0 kl Fourier projection was calculated with all signs positive (Fig. l(a)). This showed the location of the potassium ion. Successive projections showed, in turn, the biuret molecule (Fig. $\mathbf{l}(b)$) and the two water molecules (Fig. $\mathbf{l}(c)$) in the asymmetric unit. One further projection indicated small coordinate shifts, and the next corresponded to complete phase-determination in this zone (Fig.l(d)).

One of the prime objects of this work was to discover whether the copper was bound to the biuret molecule at the amide nitrogen or oxygen atoms. In the struc-ture-factor calculations associated with the above electron-density projections, all the atoms of the biuret molecule were initially given equal weights as nitrogen atoms. In the electron-density maps, however, the atoms of the amide groups from their first appearance had peak heights which left little doubt that nitrogen atoms were bonded to the central copper atom. The $0 k l$ structure-factors calculated for this configuration of the ligand molecule, using positional coordinates read from the last Fourier projection with a temperature-factor $\exp \left(-2 \cdot 2 \sin ^{2} \theta / \lambda^{2}\right)$, had a reliability-factor (for the observed reflections) $R=\Sigma\left|F_{o}-F_{c}\right| / \Sigma\left|F_{o}\right|=0 \cdot 122$. If either amide group was inverted so that it was coordinated to the metal via an oxygen atom, the agreement between the F_{o} 's and F_{c} 's became worse by about 1%.

An $0 k l$ - $\left(F_{o}-F_{c}\right)$-synthesis now not only indicated the expected changes in some coordinates and in the weights or temperature-parameters of the heavier atoms, but also had peaks corresponding to seven hydrogen atoms (Fig. 2). These provided strong evidence that the structure contained K^{+}and $\left[\mathrm{Cu}(\mathrm{NHCONHCONH})_{2}\right]^{=}$ions and $\mathrm{H}_{2} \mathrm{O}$ molecules
instead of, e.g., K^{+}and OH^{-}ions and $\left[\mathrm{Cu}\left(\mathrm{NH}_{2} \mathrm{CONHCONH}\right)_{2}\right]^{++}$complexes. While the important, tentative conclusions regarding the nature of the complex ion and the identities of the coordinating atoms were thus reached at an early stage of the work, they were substantiated by everything that happened in the further refinement of the structure.

Fig. 2. $0 k l\left(F_{o}-F_{c}\right)$ projection. Contours at 0.5 e. \AA^{-2}, negative contours dashed, zero contour dotted. Atomic positions from projection shown in Fig. $1(d)$, hydrogen atoms omitted from F_{c}.

The high intensity of the $\overline{1} 03$ reflection $\left(\left|F_{o}\right|=184\right)$ made it likely that the chelating molecules lay in this plane. The angle between the ($\overline{103)}$ and (100) planes was 38°. The bond-lengths of the amide-groups in the 0 kl -projection were compatible with those of normal amide groups tilted at this angle from the (100) plane. Approximate x-coordinates for the atoms of the biuret residues were calculated on this assumption. The potassium ion was placed at $x=0.5$ on the basis of a strong peak at $(0.50,0 \cdot 80)$ on an $h k 0$ Patterson projection, and of the reasonableness of the resultant $\mathrm{K}^{+} \cdots \mathrm{O}$ contacts with the oxygen atoms of the nearest biuret residues.

These x-coordinates were adequate for attaching signs to the 320 observed $F(\mathrm{l} k l$)'s, whose scale at this stage was only approximate. Generalized projections $\mathrm{C}_{1}(y z)$ and $\mathrm{S}_{1}(y z)$ were computed from the first-layer data, and as a result the x-coordinates of the two $\mathrm{H}_{2} \mathrm{O}$ molecules could also be approximately determined. When the $\mathrm{H}_{2} \mathrm{O}$ molecules were included in the calculated $F(\mathrm{l} k l)$'s, R fell from 0.33 to 0.29 .

Further refinement of the combined zero- and firstlayer a-axis data by generalized projections and least-squares quickly gave much improved agreement, the $F(1 k l)$'s being scaled to their calculated values.

The x-coordinates of some atoms, however, converged on values which corresponded to non-planar amidegroups with unlikely bond-lengths. These anomalous structural features disappeared when comparison with the (by now) absorption-corrected c-axis data led to a 10% revision of the scale of the $1 k l$ intensities.

Refinement of coordinates

A least-squares refinement program for the Sydney University computer SILLIAC (Freeman, 1958) permitted the initial adjustments of the positional parameters to be carried out rapidly. While this program had provision for only one over-all twoparameter temperature factor $\exp \left(-B \sin ^{2} \theta / \lambda^{2}-\alpha h^{2}\right)$, it had the virtues of availability and very high speed. The $0 k l, 1 k l$ and $h k 0$ data were accordingly submitted to three cycles of refinement, which reduced R for these reflections from $0 \cdot 147$ to $0 \cdot 113$. The refinement process was now extended to the complete data. After five least-squares cycles, the over-all reliability factor R had dropped from $0 \cdot 144$ to $0 \cdot 124$. When the hydrogen atoms were included (see below), R was 0.120 . The final temperature-parameters were $B=2.24$ and $\alpha=0.01$. The greatest coordinate change in the last cycle was $0.003 \AA$ in the x-direction, and the standard deviations of the positional parameters of the light atoms were between 0.02 and $0.03 \AA$.
The weighting system throughout this part of the refinement was that of Hughes (1941), i.e.

$$
\begin{aligned}
& V w=1 /\left|F_{o}\right| \text { for }\left|F_{o}\right| \geq 4\left|F_{\text {min. }}\right|, \\
& V w=\frac{1}{4}\left|F_{\text {min. }}\right| \text { for }\left|F_{o}\right|<4\left|F_{\text {min. }}\right| \text { and for } \\
& \quad\left|F_{c}\right|>\left|F_{\text {unobss. }}\right|, \text { and } \\
& \checkmark w=0 \text { for }\left|F_{c}\right| \leqq\left|F_{\text {unobs. } .}\right| .
\end{aligned}
$$

($\left|F_{\text {min }}\right|$ was the smallest observed F, and $\left|F_{\text {unobs. }}\right|$ was the maximum value of an unobserved reflection.) With these weights, $\Sigma w(\Delta F)^{2}$ was $50 \cdot 5$.
The parameters from the last SILLIAC least-squares cycle were supplemented by the calculation of individual isotropic temperature factors for all atoms except the hydrogens. For this purpose, Cochran's method (1951) was applied to an $0 k l\left(F_{o}-F_{c}\right)$-projection. This step probably did not reduce the later computation. In view of the extent to which the
refinement of the anisotropic thermal parameters was ultimately pushed, a single isotropic temperature parameter would have been just as adequate a starting point. Seen in retrospect it would also have been a more correct early strategy, once the structure was established, to use all the available data instead of seeking economy by using only a limited number of F's at the start.

The further refinement of the structure was carried out on a Datatron 205 computer. The program used only the diagonal terms of the least-squares matrix to evaluate the coordinate shifts, but for each atom a set of seven seven-term normal equations was solved to derive a scaling-factor and six coefficients for the anisotropic temperature factor
$\exp \left(-4 \beta_{i}^{\prime} \sin ^{2} \theta\right) \exp \frac{1}{10}\left(\alpha_{i}^{\prime} h^{2}+\gamma_{i}^{\prime} l^{2}+\delta_{i}^{\prime} h k+\varepsilon_{i}^{\prime} k l+\eta_{i}^{\prime} h l\right)$.
The average of the scale factors for all atoms was substituted in all of the sets of normal equations which were then re-solved for the thermal parameters. [The final values of these parameters were converted to the parameters for the standard form of the temperature factor,

$$
\exp -\left(\alpha_{i} h^{2}+\beta_{i} k^{2}+\gamma_{i} l^{2}+\delta_{i} h k+\varepsilon_{i} k l+\eta_{i} l h\right) .
$$

In this form they have been listed in Table 2.]
In this manner, seven refinement cycles were carried out. The weights attached to the F 's were the same as before, with the exception that all unobservably small reflections were given $\downarrow / w=0$ for the first six cycles. The shifts indicated by an eighth cycle were not applied to the parameters; this cycle was used only to produce the final lists of structure-factors and the estimates of the various standard deviations.

The hydrogen atoms were included in the calculated structure-factors, but their coordinates and their common isotropic temperature factor were not automatically adjusted. After five cycles of refinement, the hydrogen positions were reviewed in the light of the changes which had occurred in the coordinates of the atoms to which they were presumed to be attached. This led to the discovery and correction of an arithmetical error in the original calculation of five of the hydrogen coordinates. As a result of this dis-

Table 1. Final positional parameters, their standard deviations σ, and final thermal parameters for atomic temperature-factors

$T_{i}=\exp -\left(\alpha_{i} h^{2}+\beta_{i} k^{2}+\gamma_{i} l^{2}+\delta_{i} h k+\varepsilon_{i} k l+\eta_{i} h l\right)$												
Atom	x_{i}	y_{i}	z_{i}	$10^{4} \sigma\left(x_{i}\right)$	$10^{4} \sigma\left(y_{i}\right)$	$10^{4} \sigma\left(z_{i}\right)$	$10^{4} \alpha_{i}$	$10^{4} \beta_{i}$	$10^{4} \gamma_{i}$	$10^{4} \delta_{i}$	$10^{4} \varepsilon_{i}$	$10^{4} \eta_{i}$
C_{1}	$0 \cdot 3882$	$0 \cdot 1301$	$0 \cdot 1469$	17	5	6	384	27	21	26	-6	81
C_{2}	$0 \cdot 0968$	$0 \cdot 2226$	$0 \cdot 0021$	16	4	6	316	23	27	-37	11	69
N_{1}	$0 \cdot 2800$	0.0396	$0 \cdot 1146$	16	4	5	535	23	31	-14	13	-80
N_{2}	$0 \cdot 3034$	$0 \cdot 2123$	0.0893	15	4	5	467	21	32	12	1	-37
N_{3}	-0.0251	$0 \cdot 1386$	-0.0408	15	4	5	464	25	22	-9	-9	-3
O_{1}	0.5557	$0 \cdot 1477$	0.2251	14	4	4	591	33	19	-5	-25	-127
O_{2}	0.0491	$0 \cdot 3125$	-0.0272	14	4	4	685	23	20	26	5	-65
O_{3}	0.9379	$0 \cdot 4469$	$0 \cdot 1160$	19	4	5	832	35	38	-32	5	56
O_{4}	0.8621	$0 \cdot 3259$	0.2786	17	5	5	716	50	43	57	-7	107
K+	0.5503	$0 \cdot 4030$	$-0 \cdot 1387$	4	1	1	417	35	26	18	3	-28
Cu	$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0000$	-	-	-	458	20	18	12	-2	-52

turbance，the average shifts indicated by the sixth least－squares cycle were as large as had been those in the fifth．After this，convergence was normal．

At the time of the correction of the hydrogen parameters the opportunity was taken of making a critical comparison of all the F_{o} and F_{c} ．In seven cases the disagreements were unusually large，and had shown no tendency to become smaller during the refinement．The original films were re－examined by one of the authors who had no knowledge of the directions of the disagreements．For three reflections this procedure led to the amendment of what had been
incorrect estimates；for three others the gap was narrowed in the next two cycles；but for $F(\overline{1} 03)$ ，the large discrepancy was not reduced and was ascribed to extinction．

The average standard deviations of the atomic coordinates calculated after the seventh and eighth cycles were equal．The refinement was therefore stopped．The final reliability factor（including un－ observably small reflections）was $R=0.079$ ，and $\Sigma w(\Delta F)^{2}$ had decreased to $14 \cdot 45$ ．

The coordinates，except those of the hydrogen atoms，are listed with their standard deviations in

Table 2．Observed and calculated structure factors for potassium bis－biureto cuprate（II）tetrahydrate Results in each group are in order of increasing k ．Each line shows $k, 10\left|F_{o}\right|$ and $10 F_{c}$

$\vec{\omega}$ जat an

 जーwn－
ज⿵人̆जゴ ：

 ，x，6

 WNu్ర
 \div

 1，k， 3

Table 1. For comparison, r.m.s. shifts indicated for the light atoms after the final cycle were

$$
\left[\left(\overline{\Delta x} x^{2}\right)\right]^{\frac{1}{2}}=0.0004,\left[\left(\overline{\Delta y^{2}}\right)\right]^{\frac{1}{2}}=\left[\left(\overline{\Delta z^{2}}\right)\right]^{\frac{1}{2}}=0 \cdot 0001
$$

The thermal parameters are shown in Table 2. The complete set of F_{o} and F_{c} is given in Table 3.

Positions of hydrogen atoms

The peaks which were identified as seven hydrogen atoms on our first $0 k l\left(F_{o}-F_{c}\right)$-synthesis persisted on $0 k l$ difference-maps calculated at various other stages of the refinement. In the presence of so many heavier atoms with pronounced anisotropic thermal motion it

Table 3. Positional parameters for hydrogen atoms

Atom	x_{i}	y_{i}	z_{i}
H_{1}	0.320	-0.010	0.170
H_{2}	0.395	0.274	0.117
H_{3}	-0.217	0.150	-0.094
H_{4}	0.978	0.400	0.066
H_{5}	0.911	0.405	0.172
H_{6}	0.752	0.263	0.259
H_{7}	0.733	0.337	0.334

Isotropic temperature-factor: $\exp -\left(2 \cdot 4 \sin ^{2} \theta / \lambda^{2}\right)$.
would have been excessively optimistic to attach much significance to the actual peak positions. It was gratifying that the quality of the data was such that indications of the hydrogen atoms were found at all. Their persistence left little doubt that the points of attachment were correctly chosen-namely, H_{1} attached to $\mathrm{N}_{1}, \mathrm{H}_{2}$ to $\mathrm{N}_{2}, \mathrm{H}_{3}$ to $\mathrm{N}_{3}, \mathrm{H}_{4}$ and H_{5} to O_{3}, and H_{6} and H_{7} to O_{4}. Reasonable coordinates could then be deduced.

From an analysis of the inter-atomic vectors it was unlikely that $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} were involved in hydrogen bonds at all. H_{4} lay on a short $\mathrm{O}_{3} \cdots \mathrm{O}_{2}$ vector (about $2 \cdot 7 \AA$), H_{5} on a short $\mathrm{O}_{3} \cdots \mathrm{O}_{4}$ vector $(2 \cdot 8 \AA)$, H_{6} between atoms of types O_{4} and $\mathrm{O}_{1}(2 \cdot 8 \AA)$, and H_{7} between O_{4} and $\mathrm{N}_{3}(3 \cdot 1 \AA)$. There were no other short contacts except from N_{1} to the water oxygen atom (type O_{4}) nearest it ($3.5 \AA$) and from N_{3} to the O_{4} atom of the adjacent unit cell $(3 \cdot 4 \AA$) in the \bar{x}-direction. If H_{1} and H_{3} were placed, respectively, on these two vectors then it turned out that they were also very close to the planes of the amide groups to which they belonged.
The hydrogen atoms were therefore assumed to lie on the above hydrogen bonds or lines of close approach, and to be at $1.0 \AA$ from the oxygen atoms or $0.97 \AA$ from the nitrogen atoms to which they were attached. This left only H_{2}, which was placed in the plane of $\mathrm{C}_{1}, \mathrm{~N}_{2}$ and C_{2} and roughly on the external bisector of $\mathrm{C}_{1} \hat{\mathrm{~N}}_{2} \mathrm{C}_{2}$. The coordinates of the hydrogen atoms were adjusted to maintain their relative positions with respect to the rest of the structure from cycle to cycle. The final coordinates are listed in Table 4.

Atomic scattering factors

For the light atoms, the curves of Berghuis et al. (1955) were used in the early calculations, and the Hoerni-Ibers (1954) atomic scattering factors in the final refinement. For potassium and copper, the K ${ }^{+}$ and Cu^{+}seattering curves of Berghuis et al. were corrected for anomalous dispersion by the method of Dauben \& Templeton (1955). For copper, the size of this correction was about -2 electrons over the observable range, which was large compared with a slight uncertainty whether the copper should be treated as $\mathrm{Cu}^{\circ}, \mathrm{Cu}^{+}$or Cu^{++}. The difference between these would be significant for only a few reflections at low θ 's. Chemical intuition suggested that the charge originally on Cu^{++}was partly neutralised by
chelation, the resultant charge of -2 being distributed over the peripheral atoms of the complex ion. The use of the Cu^{+}curve was further justified by the absence of any peak at the origin of the first $0 k l\left(F_{o}-F_{c}\right)$-projection (Fig. 2), and by the fact that in each cycle the 'atomic' scaling factor (see above) for copper was always close to the average value for the other atoms.

Rate of convergence

The root mean square changes of the parameters (of the atoms other than copper, potassium and hydrogen) during the eight final refinement cycles are shown in Table 4, together with other evidence of the progress of the calculation. For comparison we have also included the equivalent information for six cycles of least-squares refinement in which only the reflections with $h+k+l=(2 n+1)$-i.e. those to which the copper atom made no contribution-were used. The purpose of this computational excursion was to see whether the refinement of such a structure could be effectively speeded up by carrying out a partial refinement with reflections minimally affected by a heavy atom whose position was already accurately known. (Note that the thermal parameter changes refer to the coefficients before conversion to the standard form.)
It is seen from Table 4 that convergence was achieved after six cycles of refinement with the $c a$. 400 odd reflections. While R and $\Sigma w\left(\Delta F^{2}\right)^{2}$ were in fact smaller than the corresponding quantities for the same reflections treated as part of the complete data, the standard deviations of the atomic parameters were appreciably larger after the shortened refinement than those of the parameters obtained by the eight cycles using all 1260 reflections.

	$x_{i}(\AA)$	$y_{i}(\AA)$	$z_{i}(\AA)$
R.m.s. standard deviations of coordinates from:			
Complete data	0.006	0.007	0.006
Odd F 's only	0.008	0.009	0.008
R.m.s. difference between final coordinates	0.009	0.010	0.013
Max. difference between final coordinates	$0 \cdot 01$	$0 \cdot 02$	0.020

Although the shortened refinement did not produce a value of any parameter which was significantly different from the 'complete data' value, some of the differences were considerably greater than the r.m.s. changes indicated by the final cycle of each sequence. While it is likely that the two sets of parameters would have been reconciled by following the shortened refinement with calculations using the complete data, we did not pursue the matter to this conclusion. It was apparent that this method offered little over-all economy in computations.

Table 4. Comparison of rates of convergence of refinements carried out, respectively, with the complete data (cycles 1-8) and with only the reflections with odd ($h+k+l$) (cycles 1'-6')
The r.m.s. values of the parameter-changes are calculated for light ($\mathrm{C}, \mathrm{N}, \mathrm{O}$) atoms only

Refinementcycle	$10^{4} \times$ r.m.s. value of			$10^{3} \times$ r.m.s. value of						$R \%$	$\Sigma w(\Delta F)^{2}$
	Δx_{i}	Δy_{i}	Δz_{i}	$\Delta \beta_{i}^{\prime}$	$\Delta \alpha_{i}^{\prime}$	$\Delta \gamma_{i}^{\prime}$	$\Delta \delta_{i}^{\prime}$	$\Delta \varepsilon_{i}^{\prime}$	$\Delta \eta_{i}^{\prime}$		
1	51	8	8	47	199	9	17	11	10	$12 \cdot 3$	50.54
2	29	5	6	22	84	6	14	17	5	9.5	24.06
3	20	3	4	18	35	5	20	12	4	$9 \cdot 0$	19.30
4	14	2	3	10	51	2	17	15	2	8.7	18.34
5	6	1	2	9	20	2	7	4	1	$8 \cdot 6$	17.53
6^{a}	14	3	4	9	30	1	21	7	3	$7 \cdot 9$	17.23
$7^{\text {b }}$	10	2	2	10	21	2	10	5	3	$8 \cdot 1(9 \cdot 4)^{d}$	$15 \cdot 20(7 \cdot 37)^{d}$
8	4	1	1	4	15	2	5	2	1	${ }^{7 \cdot 9(9 \cdot 1)}{ }^{\text {d }}$	$14 \cdot 45(6 \cdot 90)^{\text {d }}$
1^{\prime}	20	6	6	40	135	9	34	26	10	13.5	18.35
2^{\prime}	13	3	5	14	25	5	33	18	5	11.3	13.49
3^{\prime}	9	2	3	15	51	4	13	9	3	10.7	9.54
4^{\prime}	5	2	1	8	31	3	11	9	3	9.9	$8 \cdot 22$
$5^{\prime \prime}$	8	2	2	5	38	2	9	5	2	$9 \cdot 3$	$7 \cdot 32$
6^{\prime}	8	-	1	13	27	2	8	10	3	9.0	$6 \cdot 19$
Superscripts: a. Error in H-coordinates detected and corrected. b. Unobserved F 's given non-zero weights. c. H-atoms included in F_{c}. d. Values in parentheses are for odd reflections alone											

4. Description of structure

We have used sub-script numerals to distinguish atoms of the same type within an asymmetric unit, and super-script numerals for atoms belonging to
asymmetric units other than that centred about the copper atom at $(0,0,0)$. The relationships between the coordinates of such atoms and those listed in Table 1 are as follows:

Fig. 3. Structure of $\mathrm{K}_{2} \mathrm{Cu}(\mathrm{NHCONHCONH})_{2} .4 \mathrm{H}_{2} \mathrm{O}$ projected along c-axis.

$\left.{ }^{(2}\right): x_{i}+1, y_{i}, z_{i} ;$	${ }^{(3)}: x_{i}+1, y_{i}+1, z_{i} ;$
${ }^{(4)}: x_{i}+2, y_{i}+1, z_{i} ;$	$\left.{ }^{5}\right): x_{i}+\frac{1}{2}, \frac{1}{2}-y_{i}, z_{i}+\frac{1}{2} ;$
$\left.{ }^{6}\right): x_{i}+\frac{3}{2}, \frac{1}{2}-y_{i}, z_{i}+\frac{1}{2} ;$	$\left({ }^{7}\right): x_{i}-\frac{1}{2}, \frac{1}{2}-y_{i}, z_{i}-\frac{1}{2} ;$
$\left.{ }^{8}\right): x_{i}+\frac{1}{2}, \frac{1}{2}-y_{i}, z_{i}-\frac{1}{2}$.	

Dashes (${ }^{\prime}$) show atoms obtained from the corresponding un-dashed atoms by inversion through the copper atom of the same asymmetric unit. Thus $\mathrm{O}_{3}^{5}, \mathrm{O}_{4}^{5}, \mathrm{O}_{3}^{5 \prime}$ and $\mathrm{O}_{4}^{5 \prime}$ are the oxygen atoms of the four water molecules indicated by the molecular formula, considered with respect to the copper atom Cu^{5} at ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$).

The structure is shown in projection along the z-axis in Fig. 3. Inter-atomic vectors and inter-vector angles are listed in Table 5. Safe estimates of the standard deviations are $0.015 \AA$ for the bond-lengths and 2° for inter-bond angles.

Table 5. Inter-atomic distances and inter-vector angles

Bond-lengths		Other important distances	
$\mathrm{Cu}-\mathrm{N}_{1}$	1.9388	$\mathrm{Cu}-\mathrm{Cu}^{2}$	$3.84 \AA$
$\mathrm{Cu}-\mathrm{N}_{3}$	$1.93{ }_{2}$	$\mathrm{N}_{1}-\mathrm{Cu}^{2}$	$3 \cdot 33$
$\mathrm{C}_{1}-\mathrm{N}_{1}$	$1 \cdot 34_{2}$	$\mathrm{N}_{1}-\mathrm{N}_{3}^{\prime}$	$2 \cdot 74$
$\mathrm{C}_{1}-\mathrm{N}_{2}$	$1 \cdot 38{ }_{2}$	$\mathrm{N}_{1}-\mathrm{N}_{3}$	$2 \cdot 73$
$\mathrm{C}_{1}-\mathrm{O}_{1}$	$1 \cdot 24_{7}$	$\mathrm{O}_{4}-\mathrm{N}_{3}^{6}$	$3 \cdot 35$
$\mathrm{C}_{2}-\mathrm{N}_{2}$	$1 \cdot 409$	$\left.\mathrm{O}_{4}^{7}-\mathrm{N}_{3}^{2}\right\}$	$3 \cdot 35$
$\mathrm{C}_{2}-\mathrm{N}_{3}$	$1 \cdot 33_{7}$	$\mathrm{O}_{4}-\mathrm{N}_{1}{ }^{\prime \prime}$	$3 \cdot 45$
$\mathrm{C}_{2}-\mathrm{O}_{2}$	$1 \cdot 27_{4}$		
		Environment of K^{+}ion	
Hydrogen bonds		$\mathrm{K}+\mathrm{O}_{2}$	$2.83 \AA$
$\mathrm{O}_{1} \cdots$	2.73 A	$\mathrm{K}+\mathrm{O}_{2}^{2}$	$2 \cdot 67$
$\mathrm{O}_{2}^{2} \cdots \mathrm{O}_{3}$	$2 \cdot 74$	$\mathrm{K}^{+}-\mathrm{O}_{1}^{7}$	$2 \cdot 67$
$\mathrm{O}_{3} \cdots$	$2 \cdot 81$	$\mathrm{K}+-\mathrm{O}_{1}^{8}$	$2 \cdot 89$
$\left.\begin{array}{l}\mathrm{O}_{4} \cdots \mathrm{~N}_{3}^{5} \\ \mathrm{O}_{4}^{7} \cdots \cdot \mathrm{~N}_{3}\end{array}\right\}$		$\mathrm{K}^{+}-\mathrm{O}_{3}^{3^{\prime}}$	$2 \cdot 78$
		$\mathrm{K}^{+}-\mathrm{O}_{3}^{4}$	$2 \cdot 81$

Angles between bonds, hydrogen-bonds and other vectors

$\mathrm{N}_{1}-\mathrm{Cu}-\mathrm{N}_{3}$	$89.7{ }^{\circ}$	$\mathrm{C}_{1}-\mathrm{N}_{2}-\mathrm{C}_{2}$	$132 \cdot{ }^{\circ}$
$\mathrm{N}_{1}-\mathrm{Cu}^{2}-\mathrm{N}_{3}^{2}$	$87 \cdot 9$	$\mathrm{C}_{1}-\mathrm{N}_{2}-\mathrm{H}_{2}$	112.3
$\mathrm{N}_{1}-\mathrm{Cu}^{2}-\mathrm{N}_{1}^{2}$	$89 \cdot 7$	$\mathrm{C}_{2}-\mathrm{N}_{2}-\mathrm{H}_{2}$	$115 \cdot 4$
$\mathrm{Cu}-\mathrm{N}_{1}-\mathrm{C}_{1}$	131.5	$\mathrm{N}_{2}-\mathrm{C}_{2}-\mathrm{O}_{2}$	$115 \cdot 3$
$\mathrm{Cu}-\mathrm{N}_{1}-\mathrm{Cu}^{2}$	$89 \cdot 7$	$\mathrm{N}_{2}-\mathrm{C}_{2}-\mathrm{N}_{3}$	$117 \cdot 5$
$\mathrm{C}_{1}-\mathrm{N}_{1}-\mathrm{Cu}^{2}$	$93 \cdot 1$	$\mathrm{O}_{2}-\mathrm{C}_{2}-\mathrm{N}_{3}$	$127 \cdot 3$
$\mathrm{Cu}-\mathrm{N}_{1}-\mathrm{H}_{1}$	119.5		
$\mathrm{C}_{1}-\mathrm{N}_{1}-\mathrm{H}_{1}$	$107 \cdot 6$	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{O}_{4}$	$126 \cdot 0$
		$\mathrm{C}_{2}^{2}-\mathrm{O}_{2}^{2}-\mathrm{O}_{3}$	114.1
$\mathrm{Cu}-\mathrm{N}_{3}-\mathrm{C}_{2}$	$131 \cdot 3$		
$\mathrm{Cu}-\mathrm{N}_{3}-\mathrm{O}_{4}^{7}$	111.9	$\mathrm{O}_{2}^{2}-\mathrm{O}_{3}-\mathrm{O}_{4}$	104.0
$\mathrm{C}_{2}-\mathrm{N}_{3}-\mathrm{O}_{4}^{7}$	$93 \cdot 6$		
$\mathrm{Cu}-\mathrm{N}_{3}-\mathrm{H}_{3}$	$112 \cdot 0$	$\mathrm{O}_{1}-\mathrm{O}_{4}-\mathrm{O}_{3}$	110.3
$\mathrm{Cu}^{2}-\mathrm{N}_{3}^{2}-\mathrm{O}_{4}^{7}$	111.9	$\mathrm{O}_{1}-\mathrm{O}_{4}-\mathrm{N}_{3}^{5}$	$97 \cdot 7$
$\mathrm{C}_{2}-\mathrm{N}_{3}-\mathrm{H}_{3}$	$114 \cdot 3$	$\mathrm{O}_{3}-\mathrm{O}_{4}-\mathrm{N}_{3}^{5}$	$131 \cdot 3$
$\mathrm{C}_{2}^{2}-\mathrm{N}_{3}^{2}-\mathrm{O}_{4}^{7}$	$114 \cdot 9$	$\mathrm{O}_{1}-\mathrm{O}_{4}-\mathrm{N}_{3}^{6}$	$126 \cdot 4$
		$\mathrm{N}_{3}^{5}-\mathrm{O}_{4}-\mathrm{N}_{3}^{6}$	$73 \cdot 6$
$\mathrm{N}_{1}-\mathrm{C}_{1}-\mathrm{N}_{2}$	$117 \cdot 6$	$\mathrm{O}_{3}-\mathrm{O}_{4}-\mathrm{N}_{3}^{6}$	114.5
$\mathrm{N}_{1}-\mathrm{C}_{1}-\mathrm{O}_{1}$	$126 \cdot 1$	$\mathrm{O}_{1}-\mathrm{O}_{4}-\mathrm{N}_{1}^{6^{\prime}}$	$170 \cdot 3$
$\mathrm{O}_{1}-\mathrm{C}_{1}-\mathrm{N}_{2}$	116.3	$\mathrm{N}_{3}^{5}-\mathrm{O}_{4}-\mathrm{N}_{1}^{6^{\prime}}$	$73 \cdot 7$
		$\mathrm{O}_{3}-\mathrm{O}_{4}-\mathrm{N}_{1}^{6^{\prime}}$	$79 \cdot 2$

Environment of copper atom

The copper atom is bonded to four nitrogen atoms lying at distances of $1.93 \AA$ and at the corners of an almost perfect square of side $2 \cdot 73 \AA$. Adjacent complexes are stacked along lines parallel to the x-axis, with their 'coordination-squares' at such an inclination that each bonded nitrogen atom N_{1} also lies in the octahedral position with respect to the copper atom of one of the two adjacent complexes. The environment of the metal atom is thus comparable with that in copper phthalocyanine (Robertson, 1935, 1936, 1937). The octahedra of nitrogen atoms about Cu and Cu^{2} share the $\mathrm{N}_{1}-\mathrm{N}_{1}^{2 \prime}$ edge. The distance between the copper atom and the octahedral nitrogen is the minimum distance between any two points in adjacent complexes, but its size ($3 \cdot 33 \AA$) implies that any inter-action between these atoms is weak.

Dimensions of ligand molecule

The biuret molecule has previously been studied in the crystals of biuret hydrate (Hughes, Yakel \& Freeman, 1961) and bis-biuret cadmium(II) chloride (Cavalca, Nardelli \& Fava, private communication). The dimensions found in the hydrate and in the copper complex are shown in Fig. 4; the following discussion applies substantially also to the cadmium derivative.

Fig. 4. Comparison of dimensions of biuret in (left) the hydrate and (right) the copper complex.

Coordination to copper seems to have no significant effect upon the linear and angular dimensions of the biuret molecule, although the configuration of the two amide groups is changed. There is thus no detectable change in the relative contributions of the resonance forms of the biuret molecule (Hughes et al., 1961). Neither in biuret nor in the copper complex are there significant differences between the lengths of equivalent $\mathrm{C}-\mathrm{N}$ bonds ($\mathrm{C}_{1}-\mathrm{N}_{1}$ and $\mathrm{C}_{2}-\mathrm{N}_{3} ; \mathrm{C}_{1}-\mathrm{N}_{2}$ and $\mathrm{C}_{2}-\mathrm{N}_{2}$). In the complex, the difference between the bond-lengths of $\mathrm{C}_{1}-\mathrm{O}_{1}$ and $\mathrm{C}_{2}-\mathrm{O}_{2}$ lies just inside the limit of 'possible significance' according to the usual t_{0}-test (Cruickshank \& Robertson, 1953).

The value of the angle $\mathrm{C}_{1}-\mathrm{N}_{2}-\mathrm{C}_{2}$ is abnormally large in the complex (132°) as it is also in the free molecule $\left(128^{\circ}\right)$. The cause in both cases is almost certainly steric strain-arising in the free molecule from an internal hydrogen bond (Hughes et al., 1961), and in the complex from the accommodation of the metal

Table 6. Details of planes of best fit

Each plane is represented by $l x^{\prime}+m y^{\prime}+n z^{\prime}+k=0$ with respect to orthogonal axes, relative to which the usual monoclinic coordinates of a point (x, y, z) become $x^{\prime}=x+z \cos \beta, y^{\prime}=y$, and $z^{\prime}=z \sin \beta$

						Angles between normal to plane and recip. axes			Angle between plane and plane 1	
Plane	l		m	n	k	x^{*}	y^{*}	z^{*}		
1	$+0.8666$		$-0 \cdot 1221$	-0.4838	0	33.9°	$97 \cdot{ }^{\circ}$	118.9°	-	
2	$+0.8885$		$-0 \cdot 1123$	-0.4450	$+0.0896$	-	-	-	$2 \cdot{ }^{\circ}$	
3	+0.8597		-0.0595	-0.5073	$+0 \cdot 1287$	-	-	-	$3 \cdot 9$	
4	$+0.8770$		-0.0817	-0.4735	$+0.0643$	$32 \cdot 75$	$5 \quad 94 \cdot 7$	118.3	$2 \cdot 5$	
		Deviations (in \AA) from plane						Max. standard deviations of atomic positions (in \AA)		
	Atom	1		2	3		4			
	Cu	0		-	-		-			
	C_{1}	-		$+0.0046$	-		$+0.0093$			
	O_{1}	-		-0.0017	-		-0.0272			
	N_{1}	0		-0.0015	-		-0.0165			
	N_{2}	-		-0.0014	$+0.0005$		$+0.0627$			
	C_{2}	-		-	-0.0018		+0.0042			
	O_{2}	-		-	$+0.0007$		-0.0364			
	N_{3}	0		-	$+0.0006$		$+0.0039$			
Key to pla	s. Plane 1: $\mathrm{CuN}_{1} \mathrm{~N}_{3}\left(\mathrm{~N}_{1}^{\prime} \mathrm{N}_{3}^{\prime}\right)$			Plane 2: $\mathrm{C}_{1} \mathrm{O}_{1} \mathrm{~N}_{1} \mathrm{~N}_{2}$.		Plane 3: $\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~N}_{3} . \quad$ Pla			$\text { lane 4: } \mathrm{C}_{1} \mathrm{O}_{1} \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~N}_{3}$	

atom. Similarly the internal $\mathrm{Cu}-\mathrm{N}-\mathrm{C}$ angles at both N_{1} and N_{3} are 131°, a considerable distortion from the value for trigonal bonds.

Configurations at ligand nitrogen atoms

Apart from its bonds with Cu and C_{2}, the atom N_{3} has two short contact distances, each with a water oxygen atom of type O_{4} (see Fig. 3). These atoms complete a distorted tetrahedron about N_{3}. We have assumed that the hydrogen-bond $\mathrm{N}_{3} \cdots \mathrm{H}-\mathrm{O}_{4}^{7}(3 \cdot 05 \AA)$ involves the hydrogen atom H_{7}^{7} of the water molecule. The amide hydrogen H_{3} is then not used in any hydrogen bond: we have placed it on the second $\mathrm{N}_{3} \cdots \mathrm{O}_{4}$ vector $(3 \cdot 35 \AA)$, which lies almost in the $\mathrm{CuN}_{3} \mathrm{C}_{2}$ plane. Apart from its length, this vector is precluded from being a hydrogen bond by the angles which it makes with the three certain hydrogen-bonds at O_{4}. It is equally possible that H_{3} should have been placed along the bond $\mathrm{N}_{3}-\mathrm{H} \cdots \mathrm{O}_{4}^{7}$, and that H_{7}^{7} lies roughly in the direction $\mathrm{O}_{4}^{7} \cdots \mathrm{~N}_{3}^{2}$ (but at reasonable angles with the other bonds to O_{4}^{7}). The positions of N_{3} and O_{4} would be scarcely affected, and this arrangement would leave N_{3} with a more satisfying, distorted trigonal arrangement of three bonded contacts (bondangles $131^{\circ}, 112^{\circ}$ and 94°).

The configuration about N_{1} is similarly a distorted triangle, consisting in this case of $\mathrm{Cu}, \mathrm{C}_{1}$ and H_{1}. The $\mathrm{N}_{1}-\mathrm{H}_{1}$ bond does not take part in hydrogen bonding, and the most reasonable position for H_{1} is close to the plane of the amide group. The copper atom Cu^{2} of the adjacent complex lies almost exactly on the normal to both the $\mathrm{Cu}-\mathrm{N}_{1}$ and $\mathrm{C}_{1}-\mathrm{N}_{1}$ bonds.

Planarity of amide groups

Just as the free biuret molecule is not planar, so the coordinately-bound biuret residue is bent slightly
about the line joining Cu to N_{2}, the two amide groups then being rotated about their $\mathrm{C}-\mathrm{N}_{2}$ bonds until their normals are inclined at $4^{\circ} 56^{\prime}$ to each other. Neither of the two planar amide groups thus lies in the plane of the 'coordination-square'. If a plane of best fit is calculated for the whole biuret residue, the atom N_{2} is found to lie $0.06 \AA$ (about ten times the coordinate standard deviation) away from it. Even with this approximation, however, the complex is bent by $2^{\circ} 30^{\prime}$ along the $\mathrm{N}_{1} \mathrm{~N}_{3}$ edges of the coordination-square.

In Table 6, we list the coefficients for the planes fitted to various sets of atoms by the least-squares method of Schomaker, Waser, Marsh \& Bergman (1959). The table also includes the distances of the atoms from the planes fitted to them, and the angles between the reciprocal axes and the normals to two of the least-squares planes.

Atoms not involved in complex

The two independent water molecules and the potassium ion fit into the structure in interesting ways without, however, suggesting that any general conclusions are to be drawn from them.

The potassium ion is in a hole in the structure, its nearest neighbours being the six oxygen atoms shown in the list of $\mathrm{K}^{+}-0$ distances in Table 5. The six oxygen atoms form a slightly distorted trigonal prism with the potassium ion almost at the centre. Successive prisms in the x-direction share their triangular faces. The $0-\mathrm{K}^{+}-\mathrm{O}$ angles subtended at the potassium ion by the long edges of the prism all lie between 87.0° and 88.7°, and those angles subtended by the edges of the triangular faces between $75 \cdot 0^{\circ}$ and $79 \cdot 1^{\circ}$.

One corner of each of these triangular faces is occupied by a water molecule whose oxygen atom is

Table 7. Parameters of thermal vibration ellipsoids
q_{i}, magnitudes of principal axes; $g_{i k}$, direction cosines with respect to reciprocal axes $k ; \varphi_{i}$, angles between principal axes and normal to plane of best fit through biuret molecule (for Cu, φ_{i} is referred to normal to coordination square)

$\begin{aligned} & \text { Atom } \\ & \mathrm{C}_{1} \end{aligned}$	Axis i	q_{i}	$g_{i 1}$
	1	$0 \cdot 674$	$0 \cdot 861$
	2	0.506	0.066
	3	0.247	-0.504
C_{2}	1	0.636	0.630
	2	0.510	-0.521
	3	$0 \cdot 222$	0.576
N_{1}	1	I.011	0.768
	2	$0 \cdot 492$	0.581
	3	0.334	-0.269
N_{2}	1	0.812	0.762
	2	0.519	0.629
	3	0.372	-0.156
N_{3}	1	0.694	0.977
	2	0.512	-0.129
	3	0.345	$0 \cdot 169$
O_{1}	1	1-131	0.815
	2	$0 \cdot 658$	-0.388
	3	0.098	0.431
O_{2}	1	1.097	0.941
	2	0.442	$0 \cdot 093$
	3	$0 \cdot 291$	0.325
O_{3}	1	1.240	0.987
	2	0.752	-0.050
	3	0.583	$0 \cdot 156$
O_{4}	1	1.202	0.865
	2	0.931	-0.030
	3	0.610	-0.502
K^{+}	1	0.701	0.816
	2	0.632	$0 \cdot 148$
	3	0.425	0.559
Cu	1	0.767	0.896
	2	$0 \cdot 347$	-0.058
	3	$0 \cdot 289$	$0 \cdot 440$

of the type O_{3}. As a consequence of the alternation of potassium ions and triangles of oxygen atoms, each O_{3} has two K^{+}-ions as near neighbours at distances of 2.76 and $2.81 \AA$. An approximate tetrahedron about O_{3} is completed by the two atoms, O_{4} and O_{2}^{2} to which it is hydrogen-bonded. [It should be noted by reference to Table 5 that O_{3} is not one of the near neighbours of the potassium ion labelled K^{+}in Fig. 3, but is so related to the ions labelled K^{3} and $\mathrm{K}^{4^{\prime}}$.]

The oxygen atom O_{4} of the second water-molecule also has an approximately tetrahedral environment. It is hydrogen-bonded to $\mathrm{O}_{3}, \mathrm{O}_{1}$ and $\mathrm{N}_{3}^{\overline{3}}$, its hydrogen atoms lying on or near the lines joining it to the latter two.

Analysis of thermal parameters

The parameters q_{i} and $g_{i k}$ of the thermal vibration ellipsoids for all atoms (other than hydrogens) are shown in Table 7. They were derived from the thermal coefficients listed in Table 2 by the procedure of Rollett \& Davies (1955) and represent, respectively, the magnitudes of the principal axes of the vibration ellipsoids and their direction cosines with respect to the reciprocal axes.

$g_{i 2}$	$g_{i 3}$	φ_{i}
$0 \cdot 135$	$0 \cdot 551$	$63 \cdot{ }^{\circ}$
0.927	-0.364	$79 \cdot 8$
$0 \cdot 350$	0.751	151.1
0.090	0.814	$84 \cdot 1$
0.785	$0 \cdot 296$	$132 \cdot 9$
$0 \cdot 613$	-0.500	$43 \cdot 6$
-0.173	-0.560	$8 \cdot 1$
$0 \cdot 593$	$0 \cdot 598$	81.8
$0 \cdot 787$	-0.573	$89 \cdot 6$
0.039	-0.591	$10 \cdot 4$
$0 \cdot 196$	0.796	$83 \cdot 7$
0.980	-0.136	$98 \cdot 3$
-0.021	-0.141	$20 \cdot 5$
0.732	-0.677	$79 \cdot 1$
$0 \cdot 681$	0.723	107-1
0.217	-0.478	$17 \cdot 2$
$0 \cdot 893$	-0.255	$106 \cdot 1$
0.395	0.824	$96 \cdot 0$
0.070	-0.263	$15 \cdot 7$
$0 \cdot 887$	$0 \cdot 457$	103.7
-0.456	$0 \cdot 850$	$97 \cdot 6$
-0.122	$0 \cdot 179$	$38 \cdot 6$
0.409	0.906	124.3
0.905	-0.385	$74 \cdot 8$
$0 \cdot 299$	$0 \cdot 465$	$60 \cdot 9$
$0 \cdot 833$	-0.553	$78 \cdot 3$
$0 \cdot 466$	$0 \cdot 692$	148.2
0.325	-0.419	$23 \cdot 7$
-0.917	-0.359	$66 \cdot 6$
-0.232	0.834	$86 \cdot 4$
0.077	-0.372	13.5
0.997	0.527	$101 \cdot 6$
-0.026	0.927	96.9

We have also calculated the angles between the same principal axes and the normal to the plane of best fit of the biuret residue (plane 4 in Table 6); for the copper atom the direction cosines are referred to the normal to the coordination-square.

The results are in agreement with expectation. The atoms of the complex ion have their maximum amplitudes of vibration roughly normal to the plane of the complex. For the water molecules and potassium ion no such relationship is expected or found. The heavy atoms, copper and potassium, have relatively small amplitudes; the two loosely bound water molecules have the largest amplitudes of vibration. In the biuret residue, the two carbon atoms are exceptional in that, of all the major vibration-axes, theirs are the shortest and do not lie near the normal to the plane of the molecule.

It seems as though, superimposed on the general vibration of the complex as a whole, there is a 'folding' mode in which the copper atom and the two carbon atoms of each biuret residue are stationary and the complex bends along the $\mathrm{N}_{1} \mathrm{~N}_{3}$-edges of the coor-dination-square. In this mode the atoms $\mathrm{O}_{1}^{\prime}, \mathrm{N}_{2}^{\prime}, \mathrm{O}_{2}^{\prime}, \mathrm{N}_{1}$ and N_{3} move 'up' while the atoms $\mathrm{N}_{1}^{\prime}, \mathrm{N}_{3}^{\prime}, \mathrm{O}_{1}, \mathrm{~N}_{2}$ and O_{2} move 'down', and vice versa.

5. Colour

To a first approximation, the copper atom in this crystal experiences a tetragonal ligand field. The situation is analogous to that in copper phthalocyanine, for which an energy-level scheme compatible with electron resonance measurements has been proposed by Gibson, Ingram \& Schonland (1958). Light absorption in the metal phthalocyanines is, however, a function of the conjugated bond system rather than of the metal atom, so that the analogy cannot be taken further.

The absorption spectrum of crystalline potassium bis-biureto cuprate(II) tetrahydrate has a maximum at $505 \mathrm{~m} \mu$ and is otherwise almost identical with the spectrum of the compound in aqueous solution between $375 \mathrm{~m} \mu$ and $640 \mathrm{~m} \mu$ (Dr J. Ferguson, private communication). The complex therefore preserves its structure in solution, so that it is possible to confirm that light absorption at $\lambda_{\text {max. }}=505 \mathrm{~m} \mu$ is associated with copper(II) coordinated by four peptide nitrogen atoms (Kober \& Haw, 1916; Plekhan, 1952; Kato, 1959).

The amide nitrogen atoms, after the ionization of the protons, are not only negatively charged but are presumably also more polarizable than the nitrogen atoms in ammonia and ethylene diamine. It is therefore not necessary to invoke stabilization by π-bonding (Kato, 1959) to explain why the copper(II) complex of biuret absorbs at a shorter wave-length than do $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{++}\left(\lambda_{\text {max. }}=600 \mathrm{~m} \mu\right)$ and $\mathrm{Cu} \mathrm{en}_{2}^{++}\left(\lambda_{\text {max. }}=550\right.$ $\mathrm{m} \mu$).

6. Discussion

The conclusions to which this structure analysis leads us are:
(1) In the complex formed by biuret and copper in alkaline solution, the copper atom is bonded to the nitrogen atoms of the amide groups. This confirms the structure first proposed for this complex by Tschugaeff (1907), and supports the view (Dobbie \& Kermack, 1955; Datta \& Rabin, 1956; Rabin, 1956, 1958) that in alkaline solution metal-peptide binding at peptide nitrogen atoms follows the ionization of the peptide hydrogen atoms.
(2) The ligand molecule in this complex retains its essential dimensions after coordination. In particular, the dimensions and planarity of the amide-groups are unchanged. The amide-group resonance energy is consequently not reduced by coordination.
(3) On the other hand, distortion to accommodate the metal atom occurs by the twisting of the amide groups relative to each other, and by the variability of the internal bond angles at the ligand nitrogen atoms.

The authors gratefully acknowledge the awards of
a George Ellery Hale Fellowship at the California Institute of Technology, 1958-9 (to H. C. F.), and of an Australian Atomic Energy Commission Studentship at Sydney University, 1957-8 (to J. C. T.). We also thank Drs R. J. Irving and B. M. Gatehouse for the preparation of the original crystal specimens; the Director and staff of the Adolph Basser Computing Laboratory, University of Sydney, for their cooperation; Dr R. E. Marsh and Mr A. Hybl for the availability of their Datatron computer programs; Dr J. Ferguson for crystal light-absorption measurements; and Dr R. B. Corey for his interest and encouragement.

References

Berghuis, J., Haanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A.L. (1955). Acta Cryst. 8, 478.

Brücke, E. (1883). Monatsh. d. Chemie, 4, 203.
Cochran, W. (1951). Acta Cryst. 4, 81, 408.
Cruickshank, D. W. J. \& Robertson, A. P. (1953). Acta Cryst. 6, 698.
Datta, S. P. \& Rabin, B. R. (1956a). Trans. Faraday Soc. 52, 1123.
Datta, S. P. \& Rabin, B. R. (1956b). Biochem. Biophys. Acta, 19, 572.
Dauben, C. \& Templeton, D. (1955). Acta Cryst. 8, 841.
Dobbie, H. \& Kermack, W. O. (1955). Biochem. J. 59, 246, 257.
Freeman, H. C., Smith, J. E. W. L. \& Taylor, J. C. (1959). Nature, Lond. 184, 707.

Freeman, H. C. (1958). Aust. J. Chem. 11, 99.
Gibson, J. F., Ingram, D. J. E. \& Schonland, D. (1958). Disc. Faraday Soc. 26, 77, 94.
Hoerni, J. A. \& Ibers, J. A. (1954). Acta Cryst. 7, 744.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Hughes, E. W., Yakel, H. L. \& Freeman, H. C. (1961). Acta Cryst. 14, 345.
Joel, N., Vera, R. \& Garaycochea, I. (1953). Acta Cryst. 6, 1954.
Kato, M. (1959). Z. anorg. Chem. 300, 84.
Kober, P. A. \& Haw, A. B. (1916). J. Amer. Chem. Soc. 38, 457.
Ley, H. \& Werner, F. (1913). Ber. dtsch. Chem. Ges. 46, 4040.
Mathieson, A. McL. (1957). Acta Cryst. 10, 351.
Plekhan, M. I. (1952). Zhur. Obshchei. Khim. 22, 1633.
Rabin, B. R. (1956). Trans. Faraday Soc. 52, 1134.
Rabin, B. R. (1958). Metals and Enzyme Activety, p. 21. Cambridge: University Press.
Rising, M. M., Hicks, J. \& Moerke, G. (1930). J. Biol. Chem. 89, 1.
Robertson, J. M. (1935). J. Chem. Soc. p. 615.
Robertson, J. M. (1936). J. Chem. Soc. p. 1195.
Robertson, J. M. (1937). J. Chem. Soc. p. 219.
Rollett, J. S. \& Davies, D. R. (1955). Acta Cryst. 8, 125.

Schiff, H. (1896). Ber. dtsch. Chem. Ges. 29, 298.
Schiff, H. (1898). Ann. Chem. 299, 238.
Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600.

Tschugaeff, L. A. (1907). Ber. dtsch. Chem. Ges. 40, 1973.
$\mathrm{W}_{\text {ILSON, }}$ A. J. C. (1942). Nature, Lond. 150, 152.

[^0]: * Contribution No. 2551 from the Gates and Crellin Laboratories.
 \dagger Permanent address: School of Chemistry, University of Sydney, Sydney, Australia.
 \ddagger Present address: Australian Atomic Energy Commission, Lucas Heights, N.S.W. Australia.

